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FOREWORD 

This report presents a new method«  using the Douglas potential 
flow computer program«  for calculating the hydrodynamic coefficients 
of axisymmetric bodies.    The development given here represents the 
first phase of this work«  which is restricted to blunt- or flat-based 
bodies.     The next phase«  involving an extension to streamlined bodies« 
will be presented in a future report. 
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NOMENCLATURE 
■ 

B Equation of body surface 

FA Axial force on body 

FT Transverse force on body 

^u» f w» fq Functions describing variation of vs along body 

huf hw, hq Functions describing variation of $ along body 

i» j» k Unit vectors in the x,   y,   z directions,   respectively 

i Body length 

M Moment on body 

M1^ Nondimensional derivative of moment with respect to w 

M^j Nondimensional derivative of moment with respect to q 

M'vv Nondimensional derivative of moment with respect to w 

M* Nondimensional derivative of moment with respect to q 

N Unit vector normal to body surface | 

p Fluid pressure 

q Angular velocity of body 

R Body radius 

r Radial coordinate 
s,  n, 6 Body fixed orthogonal curvilinear coordinates 

t Time 

u Axial velocity of body 

V Fluid velocity 

Vß Velocity of body surface 

vs, vn, v^ Fluid velocity components in the s, n,  0 directions, respectively 

w Transverse velocity of body 

X,   Y,  Z Inertial rectangular coordinates 

X0 X coordinate of body CO 

X1. Nondimensional derivative of axial force with respect to ü u r 

x,  y,  z Body fixed rectangular coordinates 

Z0 Z coordinate of body CG 

iv 
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Z^,        Nondimensional derivative of transverse force with re- 
spect to w 

Zl       Nondimensional derivative of transverse force with re- 
spect to q 

Z^       Nondimensional derivative of transverse force with re- 
spect to w 

Z„        Nondimensional derivative of transverse force with re- el 
spect to q 

P Angle that a body-surface tangent makes with the axis 

y Angle the body axis makes with respect to the horizontal 

p Mass density of fluid 

<J> Potential generated by body 

SUBSCRIPTS 

u Due to axial velocity 

w Due to transverse velocity 

q Due to angular velocity 

s In direction of increasing s 

n In direction of increasing n 

G In direction of increasing 6 
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INTRODUCTION 

Traditionally,   there have been only two methods for estimating the 
hydrodynamic coefficients of axisymmetric bodies.     For bodies having 
relatively large length-to-diameter ratios and blunt or truncated bases, 
slender body theory can be used.     For bodies having a streamlined 
afterbody,   the semiempirical methods of Ref. 1 and 2 can be used, pro- 
vided the shape does not deviate too much from that of a typical torpedo. 
However,   for blunt-based bodies having small length-to-diameter 
ratios,   or for streamlined bodies having shapes that fall well outside 
the empirical data of Ref. 1 and 2,   there exists no satisfactory method 
for estimating hydrodynamic coefficients.     To fill this void and,   hope- 
fully,   to improve upon the two methods mentioned above,   the work pre- 
sented here was undertaken. 

For bodies moving with a large axial velocity,   small angle of attack, 
and small pitch rate,   so that no large amount of vortex shedding occurs, 
it is reasonable to look upon the flow around the body as being made up 
of two regions:  (1) a region near the body where viscosity and turbu- 
lence play an important part,   i. e. ,   the boundary layer; and (2) a region 
outside the boundary layer where the flow is strictly potential.    Bodies 
having blunt or truncated bases normally do not develop thick boundary 
layers; hence they may be treated as though the flow around them were 
purely potential.     Of course,   the fact that the flow separates from the 
body at the base must be properly accounted for in the treatment. 
Bodies having streamlined afterbodies normally develop thick boundary 
layers there,   so that any treatment of them must analyze both the 
boundary layer and potential flow.     Although the ultimate purpose of 
this work is to facilitate the handling of the case where a thick bound- 
ary layer is present,   the analysis presented in this report is restricted 
to blunt-based bodies where the boundary layer may be neglected.     It 
is planned to combine a technique1   for analyzing the boundary layer 
with an analysis similar to that given here to handle the case of a 
streamlined afterbody.     This work will be presented in a future report. 

In seeking a method to calculate the potential flow about an axi- 
symmetric body of arbitrary shape,   it soon became apparent that the 
method developed at the Douglas Aircraft Co.   (Ref. 4 and 5) had no 
close rival.     Not only was the method essentially exact,   but a com- 
puter program was available.     It was therefore decided to build the 
method for calculating hydrodynami.    coefficients around the Douglas 
potential flow  solution. 

The first phase of this boundary layer work is presented in Ref. 3. 
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EXTENSION OF THE DOUGLAS PROGRAM 

When the idea of using the Douglas potential flow computer program 
to calculate the hydrodynamic coefficients of axisymmetric bodies was 
conceived,   it was possible to use the program to obtain values of the 
fluid velocity at the body surface for a stream flow parallel to the axis 
and a uniform crossflow.     Since this was not enough information to 
calculate a complete set of coefficients,   a contract was let to the 
Douglas Aircraft Co.   to extend its theoretical work and include in the 
computer program the following additional capabilities. 

1. Solution for nonuniform crossflow 
2. Calculation of the perturbation potential at the body surface for 

axisymmetric flows and crossflows      ~~ 
3. Calculation of the perturbation velocity at the body surface for 

axisymmetric flows and crossflows 
With these additions to the program,   all quantities required for the de- 
termination of a complete set of coefficients were available.     A dis- 
cussion of theoretical development work and extentions to the computer 
program is given in Ref. 6. 

The term "nonuniform crossflow" used above is admittedly not ex- 
plicit.     More precisely,   this condition may be defined as any flow 
where the potential generated by the body satisfies a boundary condition 
of the type 

a<t>\ 
— I     = (vll)n=o= f(8) cose 
9n/n=0 

The terms "perturbation potential" and "perturbation velocity" are 
the potential and velocity arising from the presence of a body in a mov- 
ing mass of fluid.     They are,   of course,   equal to the potential and ve- 
locity generated by a body moving in still fluid,   provided the relative 
motion of the body and the fluid at infinity is equal. 

PHYSICAL ARRANGEMENT 

The physical arrangement considered is  shown in Fig. 1.     An axi- 
symmetric body is in planar motion in unlimited fluid with an axial 
velocity u,   a trans vex se velocity w,   and an angular velocity q.    The 
plane of motion is the X-Z plane of the inertial X,   Y,   Z coordinate 
system.     Two coordinate systems are fixed in the body:   a rectangular 
x,   y,   z system originating at the center of gravity of the body,   and an 
orthogonal curvilinear  s,   n,   0 system with the origin of the s coordi- 
nate at the body nose.     An angle y is used to define the orientation of 
the body axis relative to the X axis,   and coordinates X0 and Z0  are 
used to locate the position of the body CG in the X-Z plane. 
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Body CC 

Body cross section 
viewed from tail 

FIG. 1.   Physical AtrangemenC. 

BOUNDARY CONDITIONS 

The required condition at the body surface is one in which no fluid 
penetrates the surface and no gaps occur between the fluid and the sur- 
face.    Hence the fluid velocity component normal to the surface must 
equal  the   velocity  of  the   surface   normal  to   itself.      The following 
equation states this requirement. 

(vn)n=0 -  VB N (1) 

VB   is the velocity of the body surface and N is the unit normal vector 
to the body surface.     N is given by the relationship 

N = 

grad B 
dB dB dB 
  i +  j +  k 
8x dy 82 

MI • a * B' Mf * if • ü 
(2) 

4*m 
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where B (the equation of the body surface) = f(x,   y,   z) = 0.     Since the 
body is axisymmetric,    B may be expressed2  as 

B = ^y2 + z2   - R(x) = 0 

from which there is obtained 

dB      dB      dR dR 

Sx       8R      dx dx 

dB y 

8y      VY2  + z2 

dB z 

dz       Vy2 + z2 
(3) 

Substituting Eq. 3 into Eq. 2 and making use of the fact (see Fig. 1) that 
at the body surface dR/dx -  -tanß,   y = R  sine,   and z = R cos 6»   there 
results 

N =  sjmßi + sind cosßj + cos 0 cos ßk (4) 

Using ^'ig. 1,   the velocity of the body surface may be written directly. 

For axial motion u: VB   = ui + Oj + Ok 

For transverse motion w:      VB   = Oi + Oj + wk 

For rotation q: VB   = qR cos Oi + Oj - qxk (5) 

Substituting Eq. 4 and 5 into Eq. 1,   the boundary condition equation is 
obtained. 

For axial motion u: (vun)n-0 - u sinß 

For transverse motion >v:       (vwn),^^ = >v cosß cos 9 

For rotation q: (vqn )n=0 ^ ^(^  sinß - x cosß) cos 6        (6) 

The subscripts u,   w,   and q are introduced here to mean resulting 
from axial motion,   transverse motion,   and rotation,   respectively. 

2 Writing the expression for B in this manner implies that R is a single-valued function of x.    How- 
ever,  it is easily shown that the resulting expression, Eq. 4,   is completely general and applies equally 
well to bodies where R is a multivalued function of x,  such as flat-nosed bodies. 
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FLUID POTENTIAL 

The potential generated by the body will be made up of three parts 
arising from the three separate motions of the body:   u,   w,   and q 

d> = <t)u + 4)w  + <bq (7) 

Since the potential generated by an rxisymmetric body moving along 
its axis of symmetry is naturally axisymmetric,   the most general ex- 
pression for 4>u is 

<t»u = uFu(s, n) (8) 

In Ref. 5,   Hess  shows  that the potential gent rated by an axisym- 
metric body satisfying a boundary condition of the type 

(vu)n=o' f(s) cos0 

has the simple form 

<t) = f(s,  n) cos 6 

From Eq. 6,   therefore»   it is apparent that the most general expressions 
for 4>w and <(>    are 

<bw ■ wFw(s, n) cos e 

<l>g = <!FQ(8' n) co86 (9) 

PRESSURE AT THE BODY SURFACE 

BERNOULLI EQUATION 

Since the body is not in steady motion relative to any possible 
choice of inertia! coordinate system,   the nonsteady Bernoulli equation 
must be used tq^determine the pressure at the body surface.    Assuming 
the convention V = grad6 where V is the fluid velocity,   the pressure at 
the body surface is given by 

Pn^=   ~P|— "   *P(v2)n=0 (10) 
\ at    n=0 
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EVALUATION OF {d<S>/dt)n:z0 

The 9<J)/9t in the nonsteady Bernoulli equation is the time  rate of 
change of the potential at a point fixed in inertial  space;  i. e. , 

a<t)fX,  Y,  Z,  t) 

at 

However,   4> is known as a function of s,   n,   6,   u,   w,   and q where 

s = f(x,  r) 

n ■ f(xt  r) 

x = f(Xf  Y.  Z. t) 

r = f(X.  Y.  Z. t) 

0 = f(X,  Y,  Z,  t) 

u = f(t) 

w = f(t) 

q = f(t) 

Therefore,   the chain rule must be used.     Making use of Eq. 7,   there is 
obtained 

at /D=O   I\ as i n=0 

dö. 

an /n-0 

a<j> 

as   /n^O 

an  /n=0 

i^j  ][(!!)   p)    + (Ü)   p) 
•S  /noJl\ax/n^)\at /r^R        \dr ]n=o\dt 1^ 

p) mi\ p) +p) (ü) i 
\an/n-oJl\ax/n.o\at/r.R     \ar/n.o\at IT R. 

im +p 
i\ ao /n=o    \ a? 

a* 

fn-o    \ ae In oJ\at 

au /u=0 \ aw /n-0 \ aq /n-0 
(ID 

where the dot over a  symbol indicates the derivative with respect to 
time;  i. e. ,   u = du/dt etc. 
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Equations 6,   8,   and 9 allow the following relationships to be written. 

8s /n-0 \   SS /n-0 

a^v /8Fw\ 
-~^| =<VwS)n=0=Wl "I COS0 --  wfw(s)  COS G 
9s /n=0 \  8s /n=o 

8M /aFq\ 
  = <VqS)ii=0=  ^   cose = qf   (s) cos 9 
as  /n=0 \   as  /n=0 

I  =   (vui.)n=0=   u   sinP 
an /n=0 

a<t>w\ 

—- =   (Vwn)n-0=   W   COSß   COS0 

an /n=0 

  =   <Vqn)n-0 =   ^R   Sin ß   "   x cos ß)   cos e 

an  /n-0 

ae /n=o 

a* v 
— =   R<Vwe)n=0=   -W<Fw)n=0   sine  =   -whw(s)   „in 9 
aa /n-o 

,8M 
  = R(vqe)n-0=   -q(Fq)n=0sin9 =  -qhq(s) sine 
ae/n-o 

— =  (Fu)„^=  hu(s) 
au /n-O 

a6v 
= (Fw)nr<)cos 9 = hw(s) cos 0 

aw^ /a^O 

—^ = (Fq)n=0cos9 = hq(s) cos9 (12) 
aq /n=0 
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From Fig. 1»   it is  seen that s and n are functions of x and  r through 
the  relations 

x = xnoSe   " So   cosßds + n sinß (13) 

r = J"    sinßds + n cos ß (14) 

where ß -  f(s).      Taking the partial derivative of Eq. 13 and  14 with re- 
spect to x and solving  simultaneously for 9n/8x and ds/dx,   and taking 
the partial derivative with respect to r and  solving  simultaneously for 
9n/9r and ds/dr,   there is obtained 

an\ 
— I       =  sinß 
8x/n=0 

8s\ 
 I        =   -cos ß 
8x/n-0 

dn\ 
  =  cosß 
i8r /n=0 

8s\ 
— =  sinß (15) 
9 r /n^O 

From Fig. 1, the time rates of change of (1) the coordinates of the 
body center of gravity and (2) the angle between the body axis and the 
horizontal are 

dXo 
u cos Y + w sin -y 

dt 

dZo 
-u sin -y + w cos ■" 

dt 

dY 
—  — q 
dt 

(16) 

Also from  Fig. 1*   the  coordinates of a point in the inertial X,   Y,   Z  sys- 
tem in terms  of the coordinate   system in the body are 

8 
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X =  X0  + x CüSY +  r cos 6  sixiy 

Y =  r sin G 

Z =  Z0  -  x siny + r cos 6 cos-y (17) 

Taking the partial derivative of Eq. 17 with respect to time,   there  re- 
sults 

0 - 
dX, 

dt 

d-y                       9x                                          dy 
x sin -y   +  cos -y   +  r cos 0  cos -y   

dt at dt 

36                    Br 
+ sinyj-r sin 6   + cos 0   

at at 

0 = 

0 = 

dB                   dr 
r cos 0 — +  sin 0   

at at 

dZ dv ax 
   -  x cos -y    -   sin^y   
dt dt at 

dV 

r cos 0  siny   
dt 

dB                    dr 
+ cosy|-r sin0   + cos 0  | (18) 

at at 

Substituting Eq. 16 into Eq. 18 and solving simultaneously for ax/at, 
ar/at,   and de/dt,   there is obtained 

ax1 

at /r=R 
=  -u - qR cos 0 

 1        =   -(w ~ Qx) cos 0 
ar 

at /r-p 

ae 

at lr=R 
  =   (w   -   qx) 

sin 6 

R 
(19) 

Substituting Eq. 12,    15,   and  19 into Eq. 11,   the expression for the 
(a<})/at)n=0 is as follows: 
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.8«t»\ 
 I   = (ufu + wfw cos 9 + qf q cos 0)(u cos ß + qR cos ß cos 0 
at/n=0 

- w sinß cos G + qx sinß cosG) + (u sinß + v/ cos ß cos 0 

+ qR  sinß cos 9 - qx cos ß cosO)(-u sinß  - qR  sinß cos 9 

- w cos ß cos 9 + qx cos ß cos 9) + (-wh^ sin 9 - qh   sin 9) 

sin 9              sin 9 \ 
Iw qx I + ühu + whw cos 9 + qh    cos 0      (?.0) 

EVALUATION OF (V2)n^) 

The  square of the fluid velocity will be equal to the  sum of the 
squares of the three orthogonal components vs ,   vn,   and v^. 

i2 

2 

(V2)n=0= [(vus)n=0 + (vws)n^    + (vqs)ii=0]; 

+ t<Vun>„=0+  <Vw„)^0 + <Vqn)„=oI 
+ [(vu(,)n=:0+{vwa)n;::0+(vq   )BJ2 (21) 

Substituting Eq. 12 into Eq. 21,   the expression for (V2)    -» is 

(V2)      = (uf    + wf     cos9 + qf     cos 9)2 
* n=0       x       u w ^   q ' 

+ [u sinß + w cos ß cos 9 + q(R  sinß - x cos ß) cos 9]2 

TRANSVERSE FORCE,   AXIAL FORCE, 
AND MOMENT ON BODY 

Utilizing Fig. 1,   the expressions for the transverse force FT,   axial 
force FA»   and moment M on an elemental surface distance of the body, 
ds,   can be written directly.     The transverse force is determined by 
integrating,   around the circumference of the body,   the component of 
the pressure force in the F-j-   direction. 

dFT _ 

us 
=  -R  cos ß J      pn^ocos0d9 (23) 

19 
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The axial force is  determined by integrating,   around the body,   the 
component of the pressure force in the  FA   direction. 

dFA .2, 

ds 
=   -R  sinß   /0     Pn^dO (24) 

The moment is determined by integrating around the body the contribu- 
tions arising from (1) the product of the pressure force transverse 
component and the  lever arm x,   and (2) the product of the axial com- 
ponent of the pressure force and the lever arm R cos 0. 

dM 2 2w 
  -  Rx cos ß /0 ' pn_0cos 0d0  -  R^   sinß /o      p^cosGdO (25) 
ds       ' v '      ' v ' 

contribution from contribution from 
transverse pressure axial pressure 

force force 

Substituting Eq. 20 and  22 into Eq. 10 yields the expression for the pres- 
sure on the body surface,   pn=Q ■    Putting this  expression into Eq. 23,   24, 
and  25,  carrying out the indicated multiplications,   and integrating with 
respect to G around the body,   and with respect to s   along the body from 
the nose (s = 0) to the tail (s =  STAIL )»   there  results 

FT   =  puwn- /0
TAIL R  cos ß(-sinß cos ß  -  fu   sinß + i^  cos ß + fufw )ds 

+ puqir   r*TAIL R  cosß(-R  sin2 ß + x sinß cos ß + Rfu cos ß 

+ xfu  sinß + fqcosß + fufq)ds +  pwir   rSTAIL  R cosßhwds 

+ pqir JSTAIL  R cosßh   ds 

FA   (apparent mass) = pu2-iT /0
rAIL  R  sinßhuds 

M =  puwiT  r)
TAIL  R(R  sinß - x cosß)(-sinß cos ß - fu sinß 

+ fwcosß + fufw)ds +  puqir /0
STAIL R(R   sinß-x cosß)(-R   sin2 ß 

+ x sinß cosß + Rfu cos ß + xfu  sin ß + fq  cos ß + fuf   )ds 

+  pwir /JrAIL   R(R  sinß   - x cosß)hvvds 

+ pq11  /0
TAIL R(R   sinß-x cosß)h   ds     (26) 

11 
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Since the only potential ^xial force of practical significance is the axial apparent 
mass,   ail the terms in p      ,   except the term containing u,   were dropped when de- 
terming FA . 

HYDRODYNAMIC COEFFICIENTS 

The expressions for FT,   FA,   and M in terms of the SNAME (see Ref. 7) 
hydrodynamic nomenclature are 

FT= Z^ipi3^+Z<|Jpi4q+Z^ipi2uw+Z^ipi3uq 

FA (apparent mass) = X^ jpi3ü 

M = M^ipf4w + M^ipi5q + M^pl3uw + M^pl4uq (27) 

Equating the expressions for FT,   FA,   and M given by Eq. 26 and 27,   and solving 
for the hydrodynamic coefficients,   the following is obtained: 

z-  = 

z: = 

IT /0
STAIL R cos ßhwds 

n-AIL 

^i3 

IT JQ™1
 R cosPhqds 

a4 

n-AIL IT JLTAIL R  cosß(-sinp cosß-fu   sin ß + f w   cos ß f fu f w )dü 
Z1    =  

w i#2 ii 

z! = 
w /0

TAIL R cos ß(-R sin2 ß + x sinß cos ß+ Rfu cos ß + xfu sinß + f   cos ß + fufq)ds 

q i*3 

M'.   = w 

J 
1T^STAIL R

(
R

  sinß - x cosß)hwds 

ii4 

TT /STAIL R^R  Sin ß . x cos ß)hads 

4 i#5 
2* 

STAIL IT /n
TAIL R(R  sin ß - x cos ß)(-sin ß cos ß - fu   sinß + fw  cos ß + fufw )ds 

M.'    =  
u> 

12 
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IT / TAILR(R sinß-x cos ß)(-R sin2 ß+x sin ß cos ß+Rfu cos ß+xfu sin ß+f   cos ß+fuf )ds 

q 1*4 

2TT fZ™1 R  sinßhuds 
X'. =  (28) 

i'3 

EVALUATION OF INTEGRALS 

The integrals in Eq. 28 that express the hydrodynamic coefficients are functions 
of the body geometry and the functions fu(s),   fvv(s),   fq(s),   hu(s),   hvv(s),   and h   (s). 
From Eq. 8,   9,   and  12 it is  seen that 

(v    )        = uf  (s) 
us    n   O u 

<VwS  )n^=   wf
w(S)   COSO 

<VqS )n^=   Clfq<S)   COSe 

(6    )  ^0=   U(F    ) =   uh   (S) 
u   n=0 u   n=0 u 

(^w)!, 0=  W(Fw)nO COSe  =   whw<S)  COSe 

(<t>   )   ^ = q(F   )  ^n cos 6 = qh   (s) cos 0 

Hence   the   functions   fu,   fw,   and f    describe the variation of the fluid-velocity 
component, in the s direction at the body surface and in the meridian plane 0=0, 
for unit values of u,   w,   and q.     Further,   the functions hu,   hw,   and hq  describe 
the variation of the potential at the body surface in the meridian plane 0=0 for 
unit values of u,   w,   and q.     As discussed earlier,   these functions are given by the 
extended Douglas program.     They are obtained from the present3 version of this 
program in the following manner.     To obtain fu  and hu,   the following items are 
checked on the control cards:    (1) surface of revolution,   (2) perturbations only, 
and (3) potential computed.     In the outputs,   T = f u and PHI =  hu.     To obtain f^   and 
hw,   the items checked on the control cards are (1) crossflow,   (2) perturbations 
only,   and (3) potential computed.     In the outputs,   T2   = -fw   and PHI =  -h^.     To ob- 
tain   fq and   hq, the items  checked on the control cards are (1) nonuniform onset 
flow   (computed), (2) perturbations only,   and (3) potential computed.     In the out- 
puts,   T2   = f    and PHI = h   . 

A new program for calculating the potential flow   iboiit axisymmetric bodies is currently being developed at the 
Douglas Aircraft Co.      This program is written in FORTRAN IV,   in contrast to the present machine-language version 
that operates in the SAMSON system. 
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A computer program was written at this Station to perform the in- 
tegrations indicated in Eq. 28.     Since the values of fu,   fw ,   i     and hu, 
^w »   ^q obtained from the Douglas program will not normally occur at 
equally spaced values of s,   values of the integrands are calculated at 
the points where fu,   fw ,   fq   and  hu,    hw,   h^ are known from the Douglas 
program solution.     Values of the integrands at equally spaced values of 
s are then determined by three-point Eagrange interpolation,   and the 
integrals art evaluated using Simpson's rule.     An increasingly larger 
number of points is used in the Simpson-rule integration,   until the 
values of the hydrodynamic coefficients reach an essentially constant 
value. 

A COMPARISON WITH EXPERIMENT 

Since the analysis thus far has been limited to a strictly potential 
flow solution,   a comparison with experimental data from a blunt-based 
body is the only valid one that can be made,   because the boundary 
layers on such bodies are usually so thin that they may be neglected. 
(For a discussion of this area,   see the Introduction. )   Unfortunately, 
the   only  blunt-based  bodies   for   which  complete   sets   of   measured 
hydrodynamic coefficients exist are the Polaris missiles.     The Al 
configuration was chosen for the comparison be ;ause it was hoped that 
the hydrodynamic coefficients for this early version of the missile 
could be declassified.     This,   however,   proved impossible.    Therefore, 
the comparison is made on the basis of the  ratio of the coefficient de- 
termined from the theoretical calculations to the measured coefficient. 

In calculating the hydrodynamic coefficients,   it was necessary to 
account for the fact that on a blunt- or flat-based body the flow sepa- 
rates from the body at the base.     For an observer traveling with an 
axisymmetric blunt-based body having (1) a large forward velocity,   (2) 
a small angle of attack,   and (3) small pitch rate,   the flo^v behind the 
body travels  rearward almost as   though  the  body extended back for 
for some distance behind its true termination.     Therefore,   in comput- 
ing   the   values   of  fu,   f w,   and fq,   a simple model which assumes the 
body to extend back indefinitely at its base diameter was used.     Of 
course,   in calculating the values of Z^ i   Z,q,   Mw ,   and Mq from these 
values of fu, £wl and fq, the integrations were performed over the true 
surface   of  the  body  only.    In considering a model to use for calculat- 
ing the values of h ^ and hq,   it appeared likely that the pressure field 
created in the fluid due to a transverse or angular acceleration of the 
body would fairly strongly sense the presence of the abrupt termination 
of the body at the base.     H^nce the values of hw and hq used in calcu- 
lating the values of Z;v ,   Z-,   M^,   Mq were obtained with a model which 
assumes that the body ends at its true base termination,   but does not 
have a solid surface across the base.    Although several other models 
were tried for calculating values of fu,   fw,   and fq and values of hw   and 
hq,   the two models discussed above,   which are the simplest possible 
from a computational standpoint,   were found to give the best results. 

14 
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The question arises whether these  representations of the base flow, 
which worked well for the Al  Polaris missile configuration,   will work 
well for bodies of greatly different shape.     Owing to a lack of experi- 
mental data,   this question cannot be answered at this time and will have 
to await further experimental studies. 

A comparison of the theoretical and measured hydrodynannic coeffi- 
cients of the Al   Polaris missile is given in Table 1. 

. 

TABLE 1.   Ratios of Theoretical (T) to 
Measured (M) Values of Hydrodynamic 

Coefficients,  Al Polaris Missile 

Coefficient 
ratio 

Numerical 
value of ratio 

Error in 
theoretical 
coefficient 

(OT 

(Zw)M 
0.932 -6.8% 

(z;h- 
(Z;)M 

0.927 -7.3% 

(Mw)M 
0.929 -7.1% 

<M;)T 
1.047 +4.7% 

<ZW)M 
1.023 +2.3% 

<Z4>M 
0.935 -6.5% 

(Mw)M 
0.992 -0.8% 

(M4>M 
0.961 -3.9% 

15 
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Values given by the new theoretical approach presented in this  report 
are compared with the measured4  values given in Ref. 8.     As mentioned 
above,   the comparison is made on the basis of the ratio of theoretical 
to measured values. 

The largest error is  7.3%.     Considering the probable experimental 
error in the measured hydrodynamic coefficients,   this new theoretical 
approach appears to give values for blunt-based bodies that are ade- 
quate for most engineering work.     Naturally,   this supposition is tenta- 
tive,   since the comparison is limited to only one body shape. 

A comparison similar to that shown in  Table  1 w   s made using 
slender body theory.     In Table  1,   the mean of the absolute values of the 
percent error is 4.9;  for slender body theory,   it is  11.7.     In Table  1, 
the maximum percent error is  7.3;  for slender body theory,   it is  23.5. 
It thus appears that the new theoretical approach yields a  substantial 
improvement over slender body theory. 

DISCUSSION AND CONCLUSIONS 

A. new method has been presented for calculating the hydrodynamic 
coefficients of axisymmetric bodies.     This method utilizes an extended 
version of the Douglas potential flow computer program for axisymmetric 
bodies to determine those velocities and potentials at the body surface 
which are required to solve for the forces and moment acting on the 
body.     The development here has been restricted to blunt- or flat-based 
bodies where the boundary layer on the body may be neglected.     It is 
planned to extend this work to bodies having streamlined aftersection 
shapes where the thick boundary layer must be accounted for. 

Based on a comparison with experiments limited to one body shape, 
it may tentatively be concluded that the new method yields hydrodynamic 
coefficient values for blunt-based bodies that are adequate for most en- 
gineering purposes.     The successful application to a blunt-based body 
indicates th it the method might eventually be extended to streamlined 
bodies. 

The Z^, and M^. coefficients wer»» measured in the water tunnel of the Ordnance Research Labora- 
tory, Pennsylvania State University. The remaining coefficients were measured on the pitch-and-heave 
oscillator at the David Taylor Model Basin,  Washington,   D.C. 
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